GOPHER

an HPC framework for large scale graph exploration and inference (MLHPCS)

Barcelona M2 Supercomputing Center Center Centro Nacional de Supercomputación

Marc Josep, Xavier Teruel, Victor Giménez, et al.

Outline

Introduction

- Related work and context
- Analysis, design and implementation
- **Experimental results**
- Conclusions
- Future work

Introduction

Ontologies are widely used in Biomedicine

- Data integration & interoperability
- Interpretation of high-throughput experiments and clinical information
- E.g., HPO describes phenome abnormalities (symptoms)

HPC and AI solutions are needed to traverse and model the interconnectivity of **multiple ontologies**.

Related work and context

Open Biomedical and Biological Ontologies (OBO) library

- best practices
- curated corpora of ontologies

Phenotypic and genotypic relationships studies \rightarrow Identify molecular drivers underlying human diseases

Genome-wide association studies (GWAS)

- biological complexity
- lack of consensus
- susceptibility

Limiting factors

HPC: Message Passing Interface (*MPI*), Open Multi-Processing (*OpenMP*), and OpenMP SuperScalar (*OmpSs*)

Analysis and design (methods)

Probability, assuming a gaussian distribution,...

$$P(c|\mu,\sigma)=rac{1}{\sigma\sqrt{2\pi}}e^{-(x-\mu)^2/2\sigma^2}$$

... and computing the odds

$$Odds(connected|Counts) = \prod_{pt \in pathtypes} \frac{P(Count(pt)|\mu_{con}(pt), \sigma_{con}(pt))}{P(Count(pt)|\mu_{discon}(pt), \sigma_{discon}(pt))}$$

Implementation: the graph

Implementation: data structures

D	Index	
Children		
Child-1	Child-2	 Child-N
Parents		
Parent-1	Parent-2	 Parent-N
Neighbo	urs-1	
Neigh-1	Neigh-2	 Neigh-N
Neighbo	urs-2	
Neigh-1	Neigh-2	 Neigh-N

Implementation: MPI Implementation (baseline)

Implementation: the load imbalance problem

GOPHER, an HPC framework for large scale graph exploration and inference (MLHPCS'20)

June, 25th 2020

9

BSC

Implementation: MPI Implementation (balancing)

connections, distributed among MPI ranks

Implementation: OpenMP/OmpSs implementation

Experimental results: model use case

Use case

- **Ontologies:** GO and HPO, only human, version: January 2019.
- Path size: all types of paths with size of 4 or 5 elements.
- Pairs nature: from phenotypes to genotypes.
- Samples: 85,750 randomly sampled pairs of both types.
- Direct edge removal: yes

Methods:

- Receiver Operating Characteristic (ROC)
- Precision-Recall (PR) curves

Algorithm: Each path type possible of up to length 5

Experimental results: model validation

Experimental results: performance use case

Environment - MareNostrum IV cluster, located at BSC, each node:

- 2 Intel Xeon Platinum 8160, running at 2.1 GHz
- 48 cores (i.e., 24 per processor) and 33 MB L3 Cache
- 2 NUMA sockets (i.e., 1 socket per processor), 192GB per socket

Use case

- **Ontologies:** GO and HPO, only human, version: January 2019.
- Path size: all types of paths up to a size of 5 elements.
- **Pairs nature:** from phenotypes to genotypes.
- **Samples:**100,000 randomly sampled pairs (constant seed).
- Direct edge removal: yes

Algorithm: Number of paths for each path type

Experimental results: scaling factors

Conclusions

Introduce the GOPHER framework for large graph exploration and inference

"estimate the likelihood that two ontology terms are associated when missing a direct connection through a co-annotated gene"

An interdisciplinary work:

- A Biological topic;
- A Machine Learning approach;
- By means of High Performance Computing technology

Preliminary results

- Model analysis: obtaining an AUC score of 0.96 over 1.
- Performance: load imbalance problem \rightarrow balancing schedule \rightarrow scalability plots

Future Work

The HPC approach

- Study GOPHER behaviour in other architectures
- Further performance analysis (explore other metrics, trace analysis)
- Optimisation opportunities
 - Improve intra-node balance: use Dynamic Load Balancing library
 - Improve inter-node balance: use OmpSs@Cluster
- The ML approach
 - Further study (and validation) of the proposed thesis
- The Biological approach
 - Other actionable use cases: anticancer treatment recommendations
 - Other biological ontologies: mouse and fruit fly

Thanks!

Further information at: https://www.linkedin.com/in/xteruel

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Related work and context

Open Biomedical and Biological Ontologies (OBO) Foundry

- best practices
- curated corpora of ontologies

www.obofoundry.org

Phenotypic and genotypic relationships studies \rightarrow Identify molecular drivers underlying human diseases

HPC: Message Passing Interface (*MPI*), Open Multi-Processing (*OpenMP*), and OpenMP SuperScalar (*OmpSs*)

