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Problem Overview

• Neural architecture search automatically designs 
neural networks for various challenges, focusing 
on single best network

• Single network with optimal performance may 
have limited knowledge of data distribution or 
over/under-fitted to training data. 

• Many networks created & evaluated throughout 
NAS, providing opportunity to assemble network 
ensembles.

• Neural network ensembles combine outputs from 
neural networks with different parameters, 
offering improved prediction accuracies. 
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Problem Overview

• We produced network ensembles with results 
from one or more runs of Multi-node 
Evolutionary Neural Networks for Deep 
Learning (MENNDL)

• Two approaches considered and applied to 
two traditional image dataset benchmarks. 

• We detail effects of ensembling networks from 
NAS method including:
– Ensembles created from multiple 

instantiations of method.
– Size of ensemble on performance.
– Performance measured with accuracy & 

ensemble diversity.
Alam, K, Siddique, N., Adeeli, H. A dynamic ensemble learning algorithm for 
neural networks, Neural Computing and Applications. Jul. 2019
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Neural Architecture Search

• Features & learning capacity of deep convolutional 
neural networks (CNN) controlled by 
hyperparameters

• Tailoring architecture to data set is computationally 
expensive & time-consuming

• Hyperparameters traditionally selected manually or 
by grid or random search. 

• We use MENNDL- evolutionary optimization 
approach to NAS

– HPC framework that uses evolutionary algorithm 
to parallelize large-scale network evaluation.

– Allows efficient hyperparameter search, by 
considering previous results, produces networks 
with increased accuracy & efficiency

Bergstra, J, and Bengio, Y. Random Search for 
Hyperparameter Optimization, Journal of Machine Learning 
Research, Feb. 2012
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Neural Network Ensembles

• Collection of neural networks trained on 
same task; results combined to produce 
model high generalization ability

• Successful deep learning models learn 
distribution of dataset; single models often 
overfit

• Network ensembles with different parameters 
and architectures learn varying aspects of 
training set 

• Ensemble networks with randomly generated 
topologies, weights, or that learn random 
subsets of training data to encourage training 
error diversity.

Combined Network Output

...

Input

Output
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MENNDL Overview

• Multi-node Evolutionary Neural Networks for 
Deep Learning (MENNDL)- software 
framework that implements evolutionary 
algorithm for optimizing neural network 
topology & hyperparameters. 

• Optimizes number of layers, layer type for 
each layer, and the corresponding layer 
hyperparameters. 

• Utilizes asynchronous approach to evaluate 
the networks it generates in parallel in order 
to maximize utilization of leadership scale 
HPC 
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MENNDL

• Evolutionary algorithms mimic natural 
selection
– Neural network population as 

individuals each with set of 
architectural hyperparameters or 
genes.

• Evolutionary algorithms are good for 
global search of spaces with many local 
minima.

• Basic evolutionary process:
– Fitnesses of individuals in each 

generation evaluated (e.g. 
validation accuracy)

– selection → mutation → crossover

MENNDL Algorithm
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CIFAR-10 MENNDL Top Networks Runs 1-8 
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MENNDL Network Ensembles
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Measuring Ensemble Diversity

• Ensemble diversity measured by 
averaging total disagreement 
between predicted outputs for each 
sample

• Result is value that measures 
probability two networks in 
ensemble disagree with one 
another on given test sample. 

Diversity Metric
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Experiment Details

• Each MENNDL run and ensemble 
experiment carried out on Summit 
supercomputer at Oak Ridge National 
Laboratory

• System has 4608 nodes, each with 2 
IBM POWER9 CPUs and 6 NVIDIA 
Volta GPUs



1414  Open slide master to edit

Datasets

• CIFAR-10 dataset consists of 10 classes of 60,000 
32 by 32 multicolor images

• MNIST consists of 70,000 28 by 28 grayscale 
images of handwritten digits ranging 0 to 9  

• Dataset samples normalized; no data augmentation
• 10% random training samples as validation set per 

network. 
• Individual networks trained with batch size of 64 on 

remaining training samples. 
• Networks evaluated on validation set to obtain 

fitnesses for selection
• Ensemble accuracies based on test sets
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Results

• Ensemble accuracies consistently higher when composed of more top networks.
• Ensemble of top 2 networks offered significant accuracy improvements over individual networks. 
• Ensembles of top 2+ MENNDL runs improve upon generalizability of single best-performing network. 

Statistic
Dataset

CIFAR-10 MNIST

Total Networks 607.63±86.35 589.63±73.71

Generations 13.54±1.76 13.08±1.61

Best Network Fitness 78.47±1.26 99.33±0.10

MENNDL 
Run 

Statistics
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Results

• CIFAR-10 ensembles tended to achieve higher accuracies with larger pools of runs
• MNIST ensembles did not, likely result of low error rates
• Misclassification rate lower with MNIST, little room to add functionally diverse networks to 

ensemble while maintaining high classification rates

MENNDL 
Runs

Ensemble Method

Top Network Top 2 Networks Top 4 Networks Top 8 Networks Top Network 8x

1 99.4067±0.1225 99.4079±0.0761 99.4929±0.0658 99.4929±0.0624 99.4092±0.1226

2 99.2554±0.1129 99.4375±0.0697 99.4742±0.0815 99.5487±0.0550 99.4471±0.0897

4 99.2858±0.0953 99.3954±0.0816 99.5029±0.0443 99.5125±0.0673 99.4629±0.0666

8 99.2629±0.1154 99.4117±0.0860 99.4646±0.0587 99.5229±0.0500 99.4038±0.0933

MENNDL 
Runs

Ensemble Method

Top Network Top 2 Networks Top 4 Networks Top 8 Networks Top Network 8x
1 77.9025±1.5848 81.0200±1.2150 82.5629±1.1345 83.0067±0.9954 82.7583±1.5473
2 78.3483±1.1599 80.8808±1.6867 83.0500±0.8213 83.5075±0.7859 83.4538±1.2226
4 79.9271±1.5532 81.6767±1.2697 83.5146±0.8869 83.9796±0.6361 83.1325±1.0810
8 79.7904±1.3920 81.7825±1.7717 83.6996±0.7334 84.3708±0.6521 84.0350±1.0589

CIFAR-10 Mean Accuracy

MNIST Mean Accuracy
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Results

● Ensembles of top 8 networks 
yielded diversities consistently 
higher than 8 retrained copies of top 
network

● Decreasing diversity with 
increasing pool size is an artifact 
of the diversity metric penalizing 
agreement even when all 
networks get the correct answer

MENNDL 
Runs

Ensemble Runs

Top 8 Networks Top Network 8x

Diversity Accuracy Diversity Accuracy

1 0.2118±0.0199 83.0267±1.0399 0.1804±0.0197 82.6771±1.5128

2 0.2008±0.0117 83.7908±0.5655 0.1736±0.0161 82.9808±1.3632

4 0.1885±0.0138 83.8854±0.9317 0.1656±0.0152 83.5458±1.2053

8 0.1777±0.0158 84.2163±0.6691 0.1647±0.0158 83.9296±1.1975

MENNDL 
Runs

Ensemble Runs
Top 8 Networks Top Network 8x

Diversity Accuracy Diversity Accuracy
1 0.0610±0.0059 99.4954±0.0536 0.0060±0.0012 99.4083±0.1242
2 0.0073±0.0007 99.5262±0.0569 0.0055±0.0014 99.4429±0.1129
4 0.0069±0.0006 99.5262±0.0585 0.0058±0.0013 99.4154±0.1126
8 0.0066±0.0006 99.5212±0.0348 0.0060±0.0013 99.4421±0.0826

CIFAR-10

MNIST
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Summary & Future Work
● Ensembles of multiple different networks produce better results than best network 

produced by search method, even when multiple copies of best network retrained 
several times

● Increased diversity of ensemble network structure produces increased diversity in 
network predictions, leading to improved ensemble performance. 

● As we have demonstrated the diversity of network structures improves performance, we 
will look to explicitly leverage this by evolving ensembles of networks in NAS approach 
instead of creating ensemble in post-process, allowing NAS to explicitly identify 
networks that complement each other



Questions?


