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Achievements in AI need exponentially growing computing power

…need exponentially growing computing powerAchievements in AI…

“Moore’s Law of AI”: FLOP/s-days double every 3.5 months

[https://openai.com/blog/ai-and-compute/]
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HPC can enable…

Larger 
Datasets

Larger 
Models

Meta-
Learning

◼ labeled datasets grow in size

◼ more samples

◼ larger samples

◼ shift towards unlabeled/generated 
datasets

◼ reinforcement learning

◼ self-supervised learning

◼ learn complex tasks & improve accuracy

◼ may not fit on single device

◼ often take weeks to train

◼ train several DNNs in parallel

◼ hyperparameter optimization

◼ ensembles

◼ Neural Architecture Search
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Larger models & datasets lead to better accuracy

[Deep Learning, Goodfellow, Bengio, Courville]
[Deep Double Descent: Where Bigger Models and More Data Hurt, Nakkiran et al.]

Classical picture: bias-variance trade-off Modern picture: deep double descent

Balance between over- and underfitting Bigger models and more data increase 
accuracy without overfitting

The growth of models & datasets is here to stay!

https://openreview.net/pdf?id=HJlnC1rKPB
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HPC can help sharing models, datasets & tools to foster progress in Deep Learning

◼ often SOTA models cannot be trained on 
workstations

◼ solution: train on HPC systems / share / 
fine-tune on downstream task

◼ Do not waste compute resources!

Models Datasets Tools

Foster Deep Learning Research: towards reproducible, accessible & energy-efficient AI

MNIST, Penn Treebank, ImageNet, … 
changed the DL landscape

We need more of them!

◼ How to generate?

◼ How to provide / host?

◼ build on / support existing tools

◼ provide hardware- / vendor-
independent solutions

High quality Deep Learning software 
available: communication libraries, DNN 
operator kernel libraries, frameworks, …
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DNN training is inherently sequential & iterative

DNN training

ResNet
◼ (mostly) linear chains of 

dependent operations

◼ backward pass needs to be 
executed after forward pass

◼ weight optimization via 
iterative algorithms

sequential

&

iterative

◼ repeated synchronization is unavoidable

◼ many levels of parallelism need to be exploited for good 
performance

◼ simplest parallelization strategy: data parallelism
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Even data parallelism faces several challenges

Distributed (synchronous) data parallelism

available implementations:

Horovod, native support in TensorFlow & pyTorch

1. replicate model on all agents with same initial 
weights

2. process one micro-batch for each agent & 
iteration

3. average gradients & redistribute to all agents 
(allreduce)

◼ introduces synchronization points

◼ needs (very) large batch sizes to scale well

◼ How to hide allreduce communication behind 
backpropagation calculations?

Challenges:

pictures taken from: [Demystifying parallel and distributed deep learning: An in-depth concurrency analysis, Ben-Nun et al.]
[Horovod: fast and easy distributed Deep Learning in TensorFlow, Sergeev et al.]
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Going beyond the synchronous optimizers may reduce statistical efficiency

beyond synchronous optimizers

asynchronous optimizers sparsity & compression

◼ Hogwild!

◼ stale SGD

reduce communication frequency

◼ quantization

◼ top-k
sparsification

alters the model & may reduce       
statistical efficiency!

reduce communication volume

pictures taken from: [Demystifying parallel and distributed deep learning: An in-depth concurrency analysis, Ben-Nun et al.]
[Hogwild: A Lock-Free Approach to Parallelizing Stochastic Gradient Descent, Recht et al.]
[SparCML: High-performance sparse communication for machine learning, Renggli et al.]
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Time to accuracy is influenced by the time per epoch & the statistical efficiency

◼ many task domains, datasets & model architectures

◼ set quality targets

◼ reference implementations in TensorFlow & pyTorch

◼ optimize time to accuracy

Time to accuracy:

We want to optimize the training time to 
solution for a target test accuracy

Time per 
epoch

◼ How much time to process all 
samples of the input dataset 
once?

◼ focus today

Statistical 
efficiency

◼ How many epochs do we need 
until convergence?

◼ will change, when changing the 
optimization algorithm

◼ keep constant through the use of 
synchronous optimizers

[MLPerf training benchmark, Mattson et al.]
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Data parallelism suffers from two major shortcomings

Large batch size problem Model size

◼ reduced test accuracy
can be avoided with hyperparameter tuning & 
appropriate learning rate schedules

◼ critical batch size
batch size beyond which there is no linear 
scaling in terms of iterations anymore

critical batch size 
grows with dataset 

complexity!

[Measuring the Effects of Data Parallelism on Neural Network Training, Shallue et al.]
[An Empirical Model of Large-Batch Training, McCandlish et al.]

◼ model must fit on single device

◼ limiting for models with large 
inputs or for complex tasks
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Model parallelism can eliminate the shortcomings of data parallelism
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◼ split DNN into partitions

◼ communicate activations 
on boundaries

◼ existing approaches:

◼ split individual layers

◼ might introduce more 
complex communication 
patters (convolutions, 
BatchNorm, …)

◼ existing approaches:

Mesh-TensorFlow, TF-
Replicator, LBANN

◼ train models of 
any size

◼ exploit additional 
levels of 
parallelism

eliminate shortcomings 
of data parallelism

GPipe, Pipedream, 
HyPar-Flow

pictures taken from: [Demystifying parallel and distributed deep learning: An in-depth concurrency analysis, Ben-Nun et al.]
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Our distributed Deep Learning framework Tarantella has three goals
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three goals

◼ high-level user interface

◼ integrate well with existing tools (TensorFlow 2)

High usability without HPC expertise

◼ automatic use of pipelining & layer-parallelism

Deep Learning without memory limits

◼ leverage highly optimized data parallel 
implementation based on GASPI

◼ vendor-independent solution

Good scalability on many systems



© Fraunhofer 

Tarantella is based on GASPI

Communication Library Zoo

Tarantella

NCCL

GlooBlink

BlueConnect

Aluminum

◼ overlap several allreduces with back-
propagating gradients

◼ non-blocking point-to-point 
communication

◼ dedicated thread to trigger progress in 
background

◼ matured standard, developed since 2005 at 
Fraunhofer ITWM

◼ natively one-sided, non-blocking & 
asynchronous communication using RDMA

◼ ideal API to overlap computation & 
communication in training DNNs

GASPI/GPI

oneCCL
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Tarantella’s data parallelism overlaps allreduces with backpropagation

Tarantella’s data parallelism

extend TensorFlow compute graph

non-blocking allreduce using GASPI & the TF ops interface

allreduce

◼ reduce scatter & allgather

◼ bandwidth efficient algorithm for large message sizes

◼ interleave iterations of multiple allreduces

◼ dedicated communication thread triggers progress in 
the background

[Optimization of Collective Communication Operations in MPICH, R. Thakur et al.]
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Tarantella’s pipelining improves existing approaches

naïve model parallelism

Tarantella’s pipelining

existing pipelining approaches

GPipe

PipeDream

◼ not performant

◼ synchronous scheme

◼ stale weights

◼ good overlap

◼ synchronous scheme

◼ support full Keras interface

[GPipe: Efficient training of giant neural networks using pipeline parallelism, Huang et al.]
[PipeDream: generalized pipeline parallelism for DNN training, Narayanan et al.]

[HyPar-Flow: Exploiting MPI and Keras for Scalable Hybrid-Parallel DNN Training using TensorFlow, Awan et al.]

1 2 3 1 1 2 2 3 3

1 1 1 2 2 2 3 3 3

GPU 1

GPU 2

1 2 3 1 1 4 2 2 5 3 3

1 1 1 2 2 2 3 3 3 4 4

◼ full pipeline

1 2 3 1 1 2 2 3 3

1 2 3 1 1 2 2 3 3

◼ sub-optimal overlap ◼ synchronous

1 1 1 2 2 2

1 1 1 2 2 2

◼ 2 partitions

◼ process 1 mini-batch 
at a time

! !! ! ! !

relaxed relaxed
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import tensorflow as tf

# Step (1)
# Initialize the framework
import tarantella as tnt

# Create Keras model
model = tf.keras.Model(resnet56.get_model())

# Step (2)
# Wrap model
model = tnt.TarantellaModel(model)

# Define optimizer with appropriate learning rate for large batch sizes
sgd = tf.keras.optimizers.SGD(learning_rate=base_learning_rate)

# Build Keras model
model.compile(optimizer = sgd,

loss ='categorical_crossentropy',
metrics = (['categorical_accuracy']))

# Load input data distributed in micro-batches
train_dataset = tf.data.FixedLengthRecordDataset(filenames_train)
train_dataset = train_dataset.shuffle().repeat().batch(batch_size)
val_dataset = tf.data.FixedLengthRecordDataset(filenames_validation)

# Perform distributed synchronous training
model.fit(train_dataset, nepochs, val_dataset)

Tarantella integrates well into existing TensorFlow 2 / Keras models

◼ advanced interface for power-users available

◼ automatic distribution of datasets

execute Tarantella with

tarantella_run -np 8 -npernode 4 -m machinefile --no-gpus
./models/resnet50.py --batch-size=1024 -e 100

Keras model Tarantella model

import tensorflow as tf

# Create Keras model
model = tf.keras.Model(resnet56.get_model())

# Define optimizer with learning rate
sgd = tf.keras.optimizers.SGD(learning_rate=base_learning_rate)

# Build Keras model
model.compile(optimizer = sgd,

loss = 'categorical_crossentropy',
metrics = (['categorical_accuracy']))

# Load input data in mini-batches
train_dataset = tf.data.FixedLengthRecordDataset(filenames_train)
train_dataset = train_dataset.shuffle().repeat().batch(batch_size)
val_dataset = tf.data.FixedLengthRecordDataset(filenames_validation)

# Perform synchronous training
model.fit(train_dataset, nepochs, val_dataset)
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Preliminary benchmarks…

◼ image classification: ResNet50 on ImageNet

◼ TensorFlow 2.1, Horovod 19.4 (with Infiniband)

◼ 5 epochs, 3 repetitions with different random seeds, micro-batch size 64 (GPU) / 256 (CPU)

◼ 2 x Intel® Xeon® Gold 6148 CPU @ 2.40GHz (20 cores/40 hyperthreads)

◼ Mellanox ConnectX-5 100Gbps Infiniband

◼ NVidia Titan V (12 GB memory)

◼ 2 x Intel® Xeon® Silver 4108 CPU @ 1.80GHz (16 cores)

◼ 2 x Mellanox ConnectX-5 100Gbps Infiniband
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…show very promising results

◼ on par / better than state-of-the-art (Horovod)

◼ good strong scalability

◼ further optimizations to be exploited

Next steps:

◼ MLPerf benchmark suite evaluation

◼ full model parallelism in active development
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The Tarantella team

“None of us is as smart as all of us.”

--- Ken Blanchard
re

se
ar

ch
 

sc
ie

n
ti

st
s

M
as

te
r’

s 
st

u
d

e
n

ts

Peter Labus, Ph.D. Alexandra Carpen-Amarie, Ph.D. Martin Kuehn, Ph.D.

Pengqiu Li Kavyashree Renukachari
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Distributed Deep Learning: summary & outlook

◼HPC can super-charge the Deep Learning 
revolution!

◼leverage data & model parallelism for large 
scale deep learning without memory limits

◼build on existing solutions for fair & green AI

Get in touch!

peter.labus@itwm.fhg.de

linkedin.com/in/PeterLabus/

Tarantella open source 
release date:

15.11.2020

mailto:peter.labus@itwm.fhg.de

