
© Fraunhofer

DISTRIBUTED DEEP LEARNING: CHALLENGES & OPPORTUNITIES

Peter Labus, Ph.D.

Competence Center for High Performance Computing, Fraunhofer ITWM, Kaiserslautern.

Fraunhofer Center Machine Learning.

ISC 2020

MLHPCS workshop

June 25, 2020

© Fraunhofer

Achievements in AI need exponentially growing computing power

…need exponentially growing computing powerAchievements in AI…

“Moore’s Law of AI”: FLOP/s-days double every 3.5 months

[https://openai.com/blog/ai-and-compute/]

© Fraunhofer

Overview: Distributed Deep Learning

Opportunities

Challenges

Distributed Deep
Learning Framework

© Fraunhofer

Overview: Distributed Deep Learning

Challenges

Distributed Deep
Learning Framework

Opportunities

© Fraunhofer

HPC can enable…

Larger
Datasets

Larger
Models

Meta-
Learning

◼ labeled datasets grow in size

◼ more samples

◼ larger samples

◼ shift towards unlabeled/generated
datasets

◼ reinforcement learning

◼ self-supervised learning

◼ learn complex tasks & improve accuracy

◼ may not fit on single device

◼ often take weeks to train

◼ train several DNNs in parallel

◼ hyperparameter optimization

◼ ensembles

◼ Neural Architecture Search

© Fraunhofer

Larger models & datasets lead to better accuracy

[Deep Learning, Goodfellow, Bengio, Courville]
[Deep Double Descent: Where Bigger Models and More Data Hurt, Nakkiran et al.]

Classical picture: bias-variance trade-off Modern picture: deep double descent

Balance between over- and underfitting Bigger models and more data increase
accuracy without overfitting

The growth of models & datasets is here to stay!

https://openreview.net/pdf?id=HJlnC1rKPB

© Fraunhofer

HPC can help sharing models, datasets & tools to foster progress in Deep Learning

◼ often SOTA models cannot be trained on
workstations

◼ solution: train on HPC systems / share /
fine-tune on downstream task

◼ Do not waste compute resources!

Models Datasets Tools

Foster Deep Learning Research: towards reproducible, accessible & energy-efficient AI

MNIST, Penn Treebank, ImageNet, …
changed the DL landscape

We need more of them!

◼ How to generate?

◼ How to provide / host?

◼ build on / support existing tools

◼ provide hardware- / vendor-
independent solutions

High quality Deep Learning software
available: communication libraries, DNN
operator kernel libraries, frameworks, …

© Fraunhofer

Overview: Distributed Deep Learning

Opportunities

Distributed Deep
Learning Framework

Challenges

© Fraunhofer

DNN training is inherently sequential & iterative

DNN training

ResNet
◼ (mostly) linear chains of

dependent operations

◼ backward pass needs to be
executed after forward pass

◼ weight optimization via
iterative algorithms

sequential

&

iterative

◼ repeated synchronization is unavoidable

◼ many levels of parallelism need to be exploited for good
performance

◼ simplest parallelization strategy: data parallelism

© Fraunhofer

Even data parallelism faces several challenges

Distributed (synchronous) data parallelism

available implementations:

Horovod, native support in TensorFlow & pyTorch

1. replicate model on all agents with same initial
weights

2. process one micro-batch for each agent &
iteration

3. average gradients & redistribute to all agents
(allreduce)

◼ introduces synchronization points

◼ needs (very) large batch sizes to scale well

◼ How to hide allreduce communication behind
backpropagation calculations?

Challenges:

pictures taken from: [Demystifying parallel and distributed deep learning: An in-depth concurrency analysis, Ben-Nun et al.]
[Horovod: fast and easy distributed Deep Learning in TensorFlow, Sergeev et al.]

© Fraunhofer

Going beyond the synchronous optimizers may reduce statistical efficiency

beyond synchronous optimizers

asynchronous optimizers sparsity & compression

◼ Hogwild!

◼ stale SGD

reduce communication frequency

◼ quantization

◼ top-k
sparsification

alters the model & may reduce
statistical efficiency!

reduce communication volume

pictures taken from: [Demystifying parallel and distributed deep learning: An in-depth concurrency analysis, Ben-Nun et al.]
[Hogwild: A Lock-Free Approach to Parallelizing Stochastic Gradient Descent, Recht et al.]
[SparCML: High-performance sparse communication for machine learning, Renggli et al.]

© Fraunhofer

Time to accuracy is influenced by the time per epoch & the statistical efficiency

◼ many task domains, datasets & model architectures

◼ set quality targets

◼ reference implementations in TensorFlow & pyTorch

◼ optimize time to accuracy

Time to accuracy:

We want to optimize the training time to
solution for a target test accuracy

Time per
epoch

◼ How much time to process all
samples of the input dataset
once?

◼ focus today

Statistical
efficiency

◼ How many epochs do we need
until convergence?

◼ will change, when changing the
optimization algorithm

◼ keep constant through the use of
synchronous optimizers

[MLPerf training benchmark, Mattson et al.]

© Fraunhofer

Data parallelism suffers from two major shortcomings

Large batch size problem Model size

◼ reduced test accuracy
can be avoided with hyperparameter tuning &
appropriate learning rate schedules

◼ critical batch size
batch size beyond which there is no linear
scaling in terms of iterations anymore

critical batch size
grows with dataset

complexity!

[Measuring the Effects of Data Parallelism on Neural Network Training, Shallue et al.]
[An Empirical Model of Large-Batch Training, McCandlish et al.]

◼ model must fit on single device

◼ limiting for models with large
inputs or for complex tasks

© Fraunhofer

Model parallelism can eliminate the shortcomings of data parallelism

m
o

d
el

 p
ar

al
le

lis
m p
ip

e
lin

in
g

la
ye

r
p

ar
al

le
lis

m

◼ split DNN into partitions

◼ communicate activations
on boundaries

◼ existing approaches:

◼ split individual layers

◼ might introduce more
complex communication
patters (convolutions,
BatchNorm, …)

◼ existing approaches:

Mesh-TensorFlow, TF-
Replicator, LBANN

◼ train models of
any size

◼ exploit additional
levels of
parallelism

eliminate shortcomings
of data parallelism

GPipe, Pipedream,
HyPar-Flow

pictures taken from: [Demystifying parallel and distributed deep learning: An in-depth concurrency analysis, Ben-Nun et al.]

© Fraunhofer

Overview: Distributed Deep Learning

Opportunities

Challenges

Distributed Deep
Learning Framework

© Fraunhofer

Our distributed Deep Learning framework Tarantella has three goals

d
is

tr
ib

u
te

d
 D

ee
p

 L
ea

rn
in

g
w

it
h

 T
a

ra
n

te
lla

three goals

◼ high-level user interface

◼ integrate well with existing tools (TensorFlow 2)

High usability without HPC expertise

◼ automatic use of pipelining & layer-parallelism

Deep Learning without memory limits

◼ leverage highly optimized data parallel
implementation based on GASPI

◼ vendor-independent solution

Good scalability on many systems

© Fraunhofer

Tarantella is based on GASPI

Communication Library Zoo

Tarantella

NCCL

GlooBlink

BlueConnect

Aluminum

◼ overlap several allreduces with back-
propagating gradients

◼ non-blocking point-to-point
communication

◼ dedicated thread to trigger progress in
background

◼ matured standard, developed since 2005 at
Fraunhofer ITWM

◼ natively one-sided, non-blocking &
asynchronous communication using RDMA

◼ ideal API to overlap computation &
communication in training DNNs

GASPI/GPI

oneCCL

© Fraunhofer

Tarantella’s data parallelism overlaps allreduces with backpropagation

Tarantella’s data parallelism

extend TensorFlow compute graph

non-blocking allreduce using GASPI & the TF ops interface

allreduce

◼ reduce scatter & allgather

◼ bandwidth efficient algorithm for large message sizes

◼ interleave iterations of multiple allreduces

◼ dedicated communication thread triggers progress in
the background

[Optimization of Collective Communication Operations in MPICH, R. Thakur et al.]

© Fraunhofer

Tarantella’s pipelining improves existing approaches

naïve model parallelism

Tarantella’s pipelining

existing pipelining approaches

GPipe

PipeDream

◼ not performant

◼ synchronous scheme

◼ stale weights

◼ good overlap

◼ synchronous scheme

◼ support full Keras interface

[GPipe: Efficient training of giant neural networks using pipeline parallelism, Huang et al.]
[PipeDream: generalized pipeline parallelism for DNN training, Narayanan et al.]

[HyPar-Flow: Exploiting MPI and Keras for Scalable Hybrid-Parallel DNN Training using TensorFlow, Awan et al.]

1 2 3 1 1 2 2 3 3

1 1 1 2 2 2 3 3 3

GPU 1

GPU 2

1 2 3 1 1 4 2 2 5 3 3

1 1 1 2 2 2 3 3 3 4 4

◼ full pipeline

1 2 3 1 1 2 2 3 3

1 2 3 1 1 2 2 3 3

◼ sub-optimal overlap ◼ synchronous

1 1 1 2 2 2

1 1 1 2 2 2

◼ 2 partitions

◼ process 1 mini-batch
at a time

! !! ! ! !

relaxed relaxed

© Fraunhofer

import tensorflow as tf

Step (1)
Initialize the framework
import tarantella as tnt

Create Keras model
model = tf.keras.Model(resnet56.get_model())

Step (2)
Wrap model
model = tnt.TarantellaModel(model)

Define optimizer with appropriate learning rate for large batch sizes
sgd = tf.keras.optimizers.SGD(learning_rate=base_learning_rate)

Build Keras model
model.compile(optimizer = sgd,

loss ='categorical_crossentropy',
metrics = (['categorical_accuracy']))

Load input data distributed in micro-batches
train_dataset = tf.data.FixedLengthRecordDataset(filenames_train)
train_dataset = train_dataset.shuffle().repeat().batch(batch_size)
val_dataset = tf.data.FixedLengthRecordDataset(filenames_validation)

Perform distributed synchronous training
model.fit(train_dataset, nepochs, val_dataset)

Tarantella integrates well into existing TensorFlow 2 / Keras models

◼ advanced interface for power-users available

◼ automatic distribution of datasets

execute Tarantella with

tarantella_run -np 8 -npernode 4 -m machinefile --no-gpus
./models/resnet50.py --batch-size=1024 -e 100

Keras model Tarantella model

import tensorflow as tf

Create Keras model
model = tf.keras.Model(resnet56.get_model())

Define optimizer with learning rate
sgd = tf.keras.optimizers.SGD(learning_rate=base_learning_rate)

Build Keras model
model.compile(optimizer = sgd,

loss = 'categorical_crossentropy',
metrics = (['categorical_accuracy']))

Load input data in mini-batches
train_dataset = tf.data.FixedLengthRecordDataset(filenames_train)
train_dataset = train_dataset.shuffle().repeat().batch(batch_size)
val_dataset = tf.data.FixedLengthRecordDataset(filenames_validation)

Perform synchronous training
model.fit(train_dataset, nepochs, val_dataset)

© Fraunhofer

Preliminary benchmarks…

◼ image classification: ResNet50 on ImageNet

◼ TensorFlow 2.1, Horovod 19.4 (with Infiniband)

◼ 5 epochs, 3 repetitions with different random seeds, micro-batch size 64 (GPU) / 256 (CPU)

◼ 2 x Intel® Xeon® Gold 6148 CPU @ 2.40GHz (20 cores/40 hyperthreads)

◼ Mellanox ConnectX-5 100Gbps Infiniband

◼ NVidia Titan V (12 GB memory)

◼ 2 x Intel® Xeon® Silver 4108 CPU @ 1.80GHz (16 cores)

◼ 2 x Mellanox ConnectX-5 100Gbps Infiniband

© Fraunhofer

…show very promising results

◼ on par / better than state-of-the-art (Horovod)

◼ good strong scalability

◼ further optimizations to be exploited

Next steps:

◼ MLPerf benchmark suite evaluation

◼ full model parallelism in active development

© Fraunhofer

The Tarantella team

“None of us is as smart as all of us.”

--- Ken Blanchard
re

se
ar

ch

sc
ie

n
ti

st
s

M
as

te
r’

s
st

u
d

e
n

ts

Peter Labus, Ph.D. Alexandra Carpen-Amarie, Ph.D. Martin Kuehn, Ph.D.

Pengqiu Li Kavyashree Renukachari

© Fraunhofer

Distributed Deep Learning: summary & outlook

◼HPC can super-charge the Deep Learning
revolution!

◼leverage data & model parallelism for large
scale deep learning without memory limits

◼build on existing solutions for fair & green AI

Get in touch!

peter.labus@itwm.fhg.de

linkedin.com/in/PeterLabus/

Tarantella open source
release date:

15.11.2020

mailto:peter.labus@itwm.fhg.de

