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Achievements in Al need exponentially growing computing power

Achievements in Al...

...need exponentially growing computing power

OpenAlI Five Defeats
Dota 2 World Champlons

OpenAl forms exclusive computing partnership with Microsoft to build
new Azure Al supercomputing technologies

July 22, 2019 | Microsoft News Center
Microsoft Invests In
and Partners with
OpenAl to Support Us
Building Beneficial AGI

Microsoft is investing $1billion in OpenAT to support us building artificial
general intelligence (AGI) with widely distributed economic benefits. We're
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HPC can enable...

Larger Larger Meta-

Datasets Models Learning

B |abeled datasets grow in size B |earn complex tasks & improve accuracy B train several DNNs in parallel

B more samples B may not fit on single device B hyperparameter optimization

B larger samples B often take weeks to train B ensembles

B shift towards unlabeled/generated B Neural Architecture Search

datasets

B reinforcement learning —— —
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Larger models & datasets lead to better accuracy

Classical picture: bias-variance trade-off
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Classical Regime:
Bias-Variance Tradeoff

Bigger models and more data increase

Modern picture: deep double descent

Modern Regime:
Larger Model is Better
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The growth of models & datasets is here to stay!

[Deep Double Descent: Where Bigger Models and More Data Hurt, Nakkiran et al.]

[Deep Learning, Goodfellow, Bengio, Courville]
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https://openreview.net/pdf?id=HJlnC1rKPB

HPC can help sharing models, datasets & tools to foster progress in Deep Learning

NSP Mask LM Mask LM \
D *

Masked Sentence A Masked Sentence B

*
Unlabeled Sentence A and B Pair

B often SOTA models cannot be trained on
workstations

B solution: train on HPC systems / share /
fine-tune on downstream task

B Do not waste compute resources!

i G- FENE- 6

—_—_—————,e—eee e e o

Datasets

MNIST, Penn Treebank, ImageNet, ...
changed the DL landscape

We need more of them!

B How to generate?

B How to provide / host?

—_—_—————,e—eee e e o

High quality Deep Learning software
available: communication libraries, DNN
operator kernel libraries, frameworks, ...

f @ ONNX
@oxnet

)

§cu DNN

fasads,

oneAPI

B build on / support existing tools

B provide hardware- / vendor-
independent solutions

—_—_—————,e—eee e e o

Foster Deep Learning Research: towards reproducible, accessible & energy-efficient Al
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DNN training is inherently sequential & iterative

DNN training

ResNet
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B (mostly) linear chains of
dependent operations

B backward pass needs to be
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B repeated synchronization is unavoidable

B many levels of parallelism need to be exploited for good
performance

B simplest parallelization strategy: data parallelism
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Even data parallelism faces several challenges

1. replicate model on all agents with same initial

Distributed (synchronous) data parallelism weights

2. process one micro-batch for each agent &

Agent 1 . W(T) iteration
? 3. average gradients & redistribute to all agents
(allreduce)

w© All- All-
Reduce Reduce

- I }
Agent m o

.— Challenges:
Time | o
M introduces synchronization points
M needs (very) large batch sizes to scale well
available implementations: B How to hide allreduce communication behind
Horovod, native support in TensorFlow & pyTorch backpropagation calculations?

pictures taken from: [Demystifying parallel and distributed deep learning: An in-depth concurrency analysis, Ben-Nun et al.]
[Horovod: fast and easy distributed Deep Learning in TensorFlow, Sergeev et al.]
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Going beyond the synchronous optimizers may reduce statistical efficiency

beyond synchronous optimizers

asynchronous optimizers
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B stale SGD

reduce communication frequency
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reduce communication volume

alters the model & may reduce
statistical efficiency!

pictures taken from: [Demystifying parallel and distributed deep learning: An in-depth concurrency analysis, Ben-Nun et al.]

[Hogwild: A Lock-Free Approach to Parallelizing Stochastic Gradient Descent, Recht et al.]
[SparCML: High-performance sparse communication for machine learning, Renggli et al.]
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Time to accuracy is influenced by the time per epoch & the statistical efficiency

Time to accuracy:

We want to optimize the training time to
solution for a target test accuracy

st MLPerf

Time per
epoch

once?

B focus today

B How much time to process all
samples of the input dataset B will change, when changing the

2 Statistical @B

efficiency N

B How many epochs do we need
until convergence?

optimization algorithm

B keep constant through the use of
synchronous optimizers

Benchmark Dataset Quality Target Reference Implementation Model
Image classification ImageNet (224x224) 75.9% Top-1 Accuracy Resnet-50 v1.5

Object detection (light weight) | COCO 2017 23% mAP SSD-ResNet34

Object detection (heavy weight) | COCO 2017 0.377 Box min AP, 0.339 Mask min AP | Mask R-CNN

Translation (recurrent) WMT English-German 24.0 BLEU GNMT

Translation (non-recurrent) WMT English-German 25.0 BLEU Transformer

Recommendation Undergoing modification

Reinforcement learning N/A Pre-trained checkpoint Mini Go

set quality targets

optimize time to accuracy

many task domains, datasets & model architectures

reference implementations in TensorFlow & pyTorch

[MLPerf training benchmark, Mattson et al.]
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Data parallelism suffers from two major shortcomings
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Large batch size problem

M reduced test accuracy

can be avoided with hyperparameter tuning &
appropriate learning rate schedules

M critical batch size

batch size beyond which there is no linear
scaling in terms of iterations anymore

® Generative Models Dota 5v6 @

¥ e (lower bound)
®  Image Classifiers

® Reinforcement Learning
Dota 1v1
Billion Word LSTM

[ ]
critical batch size
SVHN e® ImageNet -
L pons Space Tmvaders grows with dataset
CIFAR10 complexity!

®  VAE (SVHN)

®  Autoencoder (SVHN)
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Model size

B model

must fit on single device

M limiting for models with large

inputs
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BERT

Masked Sentence A Masked Sentence B

Unlabeled Sentence A and B Pair

or for complex tasks
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[Measuring the Effects of Data Parallelism on Neural Network Training, Shallue et al.]
[An Empirical Model of Large-Batch Training, McCandlish et al.]
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Model parallelism can eliminate the shortcomings of data parallelism

B split DNN into partitions

|
|
|
|
B communicate activations |
|:,'> ﬂﬁ%% on boundaries | eliminate shortcomings
|
|
|
|
|
|
|
|
|
|

of data parallelism

lining

g- B existing approaches:
- ‘S P1 P2 P3 GPipe, Pipedream,
n
= HyPar-Flow ]
) B train models of
= any size
(G | e
g e, B exploit additional
— | o levels of
% | B split individual layers parallelism
g =l [ B might introduce more
o 2| complex communication
Q | — .
> Se g | 5_:’! c% patters (convolutions,
L o | II ‘pal BatchNorm, ...)
g i B existing approaches:
| Mesh-TensorFlow, TF-
i Replicator, LBANN
pictures taken from: [Demystifying parallel and distributed deep learning: An in-depth concurrency analysis, Ben-Nun et al.]
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Our distributed Deep Learning framework Tarantella has three goals

SPONSORED BY THE

three goa|S * Federal Ministry

of Education
and Research

High usability without HPC expertise

B high-level user interface

B integrate well with existing tools (TensorFlow 2)

B vendor-independent solution
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Tarantella is based on GASPI

Communication Library Zoo

....... Global

SEEERESE -
;ammaro== Address Space
llllllll '] .

voamssnor Programming Interface
EIEFY GASPI

ATwPI

NCCL BlueConnect

Blink oneCCL Gloo Aluminum
Tarantella
%ﬁéjg"fj M overlap several allreduces with back-
kedutd propagating gradients
T Hihar B non-blocking point-to-point

PL P2 P3

communication

M dedicated thread to trigger progress in
background

P

TRDMA INTERCONNECT T

NUMA SYSTEM CO-PROCESSOR

NUMA SYSTEM CO-PROCESSOR

B matured standard, developed since 2005 at

Fraunhofer ITWM

M natively one-sided, non-blocking &
asynchronous communication using RDMA

M ideal API to overlap computation &
communication in training DNNs
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Tarantella’s data parallelism overlaps allreduces with backpropagation

Tarantella’s data parallelism allreduce
Loss
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| 1=‘ pan Reduce_scatter | [ 2™ part: Allgather |
| ReLU || ReLU.grad
Barrier
B reduce scatter & allgather
| Conv?2 '_>’ Conv2_grad } O O Update2 W2
Allreduce2 FinishAllreduce2
B bandwidth efficient algorithm for large message sizes
| Convl |—> Convl_grad }—»O——» O Updatel W1
Allreducel FinishAllreducel
M interleave iterations of multiple allreduces

Input

[T oo | B dedicated communication thread triggers progress in
i non-blocking allreduce using GASPI & the TF ops interface | the background

[Optimization of Collective Communication Operations in MPICH, R. Thakur et al.]
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Tarantella’s pipelining improves existing approaches

naive model parallelism existing pipelining approaches

GPipe I I !

M 2 partitions B not performant
B process 1 mini-batch B synchronous scheme &/ B sub-optimal overlap X B synchronous v
at a time

PipeDream

B full pipeline v B stale weights X

Tarantella’s pipelining

pZ relaxed pZ relaxed

B good overlap v/
B synchronous scheme ~/

GPU 1

GPU 2 M support full Keras interface </

[GPipe: Efficient training of giant neural networks using pipeline parallelism, Huang et al.]
[PipeDream: generalized pipeline parallelism for DNN training, Narayanan et al.]

[HyPar-Flow: Exploiting MPI and Keras for Scalable Hybrid-Parallel DNN Training using TensorFlow, Awan et al.] % Frau n hOfer
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Tarantella integrates well into existing TensorFlow 2 / Keras models

Keras model Tarantella model
import tensorflow as tf import tensorflow as tf
# Create Keras model # Step (1)
model = tf.keras.Model(resnet56.get_model()) # Initialize the framework

import tarantella as tnt
# Define optimizer with learning rate
sgd = tf.keras.optimizers.SGD(learning_rate=base_learning_rate) # Create Keras model

model = tf.keras.Model(resnet56.get_model())
# Build Keras model

model.compile(optimizer = sgd, # Step (2)

loss = 'categorical crossentropy'’, # Wrap model

metrics = ([ 'categorical_accuracy'])) model = tnt.TarantellaModel(model)
# Load input data in mini-batches # Define optimizer with appropriate learning rate for Large batch sizes
train_dataset = tf.data.FixedLengthRecordDataset(filenames_train) sgd = tf.keras.optimizers.SGD(learning_rate=base_learning_rate)
train_dataset = train_dataset.shuffle().repeat().batch(batch_size)
val_dataset = tf.data.FixedLengthRecordDataset(filenames_validation) # Build Keras model

model.compile(optimizer = sgd,

# Perform synchronous training loss ='categorical crossentropy’,
model.fit(train_dataset, nepochs, val dataset) metrics = (['categorical_accuracy']))

# Load input data distributed in micro-batches

train_dataset = tf.data.FixedLengthRecordDataset(filenames_train)
train_dataset = train_dataset.shuffle().repeat().batch(batch_size)
execute Tarantella with val_dataset = tf.data.FixedLengthRecordDataset(filenames_validation)

tarantella_run -np 8 -npernode 4 -m machinefile --no-gpus # Perform distributed synchronous training
/models/resnetSO py --batch-size=1024 -e 100 model.fit(train_dataset, nepochs, val_dataset)

B advanced interface for power-users available

B automatic distribution of datasets
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Preliminary benchmarks...

B image classification: ResNet50 on ImageNet

B TensorFlow 2.1, Horovod 19.4 (with Infiniband)
B 5 epochs, 3 repetitions with different random seeds, micro-batch size 64 (GPU) / 256 (CPU)
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Number of ranks [nodes x GPUs]

B NVidia Titan V (12 GB memory)

B 2 xIntel® Xeon® Silver 4108 CPU @ 1.80GHz (16 cores)

B 2 x Mellanox ConnectX-5 100Gbps Infiniband
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Number of ranks [nodes x CPUs]

B 2 xIntel® Xeon® Gold 6148 CPU @ 2.40GHz (20 cores/40 hyperthreads)

B Mellanox ConnectX-5 100Gbps Infiniband
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...show very promising results
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B on par / better than state-of-the-art (Horovod)

B good strong scalability

B further optimizations to be exploited

Next steps:

B MLPerf benchmark suite evaluation

B full model parallelism in active development
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The Tarantella team

research
scientists

Master’s

students

Peter Labus, Ph.D.

“None of us is as smart as all of us.”

--- Ken Blanchard

Alexandra Carpen-Amarie, Ph.D. Martin Kuehn, Ph.D.

Penggiu Li

Kavyashree Renukachari
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Distributed Deep Learning: summary & outlook

W HPC can super-charge the Deep Learning
revolution!

M|everage data & model parallelism for large
scale deep learning without memory limits

Wbuild on existing solutions for fair & green Al

Tarantella open source ‘
release date:
SC20

15.11.2020 Mgt

Get in touch!

peter.labus@itwm.fhg.de

linkedin.com/in/PeterLabus/
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