DISTRIBUTED DEEP LEARNING: CHALLENGES & OPPORTUNITIES

Peter Labus, Ph.D.

Competence Center for High Performance Computing, Fraunhofer ITWM, Kaiserslautern.

Fraunhofer Center Machine Learning.

ISC 2020 MLHPCS workshop June 25, 2020

Achievements in AI need exponentially growing computing power

Achievements in Al...

OpenAI forms exclusive computing partnership with Microsoft to build new Azure AI supercomputing technologies

July 22, 2019 | Microsoft News Center

Microsoft Invests In and Partners with OpenAI to Support Us Building Beneficial AGI

Microsoft is investing \$1 billion in OpenAI to support us building artificial general intelligence (AGI) with widely distributed economic benefits. We're

...need exponentially growing computing power

"Moore's Law of AI": FLOP/s-days double every 3.5 months

Overview: Distributed Deep Learning

Overview: Distributed Deep Learning

HPC can enable...

Larger models & datasets lead to better accuracy

The growth of models & datasets is here to stay!

HPC can help sharing models, datasets & tools to foster progress in Deep Learning

Foster Deep Learning Research: towards reproducible, accessible & energy-efficient AI

Overview: Distributed Deep Learning

DNN training is inherently sequential & iterative

DNN training

Even data parallelism faces several challenges

available implementations:

Horovod, native support in *TensorFlow* & *pyTorch*

- 1. replicate model on all agents with same initial weights
- 2. process one micro-batch for each agent & iteration
- 3. average gradients & redistribute to all agents (allreduce)

Challenges:

- introduces synchronization points
- needs (very) large batch sizes to scale well
- How to hide allreduce communication behind backpropagation calculations?

pictures taken from: [Demystifying parallel and distributed deep learning: An in-depth concurrency analysis, Ben-Nun et al.] [Horovod: fast and easy distributed Deep Learning in TensorFlow, Sergeev et al.]

Going beyond the synchronous optimizers may reduce statistical efficiency

beyond synchronous optimizers

asynchronous optimizers

sparsity & compression

pictures taken from: [Demystifying parallel and distributed deep learning: An in-depth concurrency analysis, Ben-Nun et al.] [Hogwild: A Lock-Free Approach to Parallelizing Stochastic Gradient Descent, Recht et al.]

[SparCML: High-performance sparse communication for machine learning, Renggli et al.]

Time to accuracy is influenced by the time per epoch & the statistical efficiency

Time to accuracy:

We want to optimize the training time to solution for a **target test accuracy**

Time per epoch

- How much time to process all samples of the input dataset once?
- *focus today*

- How many epochs do we need until convergence?
- will change, when changing the optimization algorithm
- keep constant through the use of synchronous optimizers

Benchmark	Dataset	Quality Target	Reference Implementation Model
Image classification	ImageNet (224x224)	75.9% Top-1 Accuracy	Resnet-50 v1.5
Object detection (light weight)	COCO 2017	23% mAP	SSD-ResNet34
Object detection (heavy weight)	COCO 2017	0.377 Box min AP, 0.339 Mask min AP	Mask R-CNN
Translation (recurrent)	WMT English-German	24.0 BLEU	GNMT
Translation (non-recurrent)	WMT English-German	25.0 BLEU	Transformer
Recommendation	Undergoing modification		
Reinforcement learning	N/A	Pre-trained checkpoint	Mini Go

- many task domains, datasets & model architectures
- set quality targets
- reference implementations in TensorFlow & pyTorch
- optimize *time to accuracy*

MLPerf

Data parallelism suffers from two major shortcomings

Model parallelism can eliminate the shortcomings of data parallelism

Overview: Distributed Deep Learning

Our distributed Deep Learning framework Tarantella has three goals

three goals

High usability without HPC expertise

- high-level user interface
- integrate well with existing tools (*TensorFlow 2*)

Deep Learning without memory limits

automatic use of pipelining & layer-parallelism

SPONSORED BY THE

Good scalability on many systems

- leverage highly optimized data parallel implementation based on GASPI
- vendor-independent solution

Tarantella is based on GASPI

Communication Library Zoo

Tarantella

overlap several *allreduces* with backpropagating gradients

non-blocking point-to-point communication

dedicated thread to trigger progress in background

- matured standard, developed since 2005 at Fraunhofer ITWM
- natively one-sided, non-blocking & asynchronous communication using RDMA
- ideal API to overlap computation & communication in training DNNs

Tarantella's data parallelism overlaps allreduces with backpropagation

Loss extend TensorFlow compute graph Softmax_grad Softmax Dense_grad Update3 W3Dense Allreduce3 FinishAllreduce3 ReLU ReLU_grad Barrier Conv2 Conv2_grad Update2 W2Allreduce2 FinishAllreduce2 Conv1_grad Conv1 Update1 W1Allreduce1 FinishAllreduce1 Input non-blocking allreduce using GASPI & the TF ops interface

Tarantella's data parallelism

Tarantella's pipelining improves existing approaches

GPipe 2 2 not performant X 2 partitions synchronous scheme process 1 mini-batch synchronous sub-optimal overlap X at a time **PipeDream** 4 2 3 4 improve stale weights X full pipeline Tarantella's pipelining relaxed relaxed good overlap 2 3 3 3 GPU 1 2 synchronous scheme 2 3 1 2 2 3 3 1 GPU 2 support full Keras interface

naïve model parallelism

existing pipelining approaches

[GPipe: Efficient training of giant neural networks using pipeline parallelism, Huang et al.]

[PipeDream: generalized pipeline parallelism for DNN training, Narayanan et al.]

[HyPar-Flow: Exploiting MPI and Keras for Scalable Hybrid-Parallel DNN Training using TensorFlow, Awan et al.]

Tarantella integrates well into existing TensorFlow 2 / Keras models

Keras model

import tensorflow as tf

Create Keras model
model = tf.keras.Model(resnet56.get_model())

Define optimizer with learning rate
sgd = tf.keras.optimizers.SGD(learning_rate=base_learning_rate)

```
# Load input data in mini-batches
```

train_dataset = tf.data.FixedLengthRecordDataset(filenames_train)
train_dataset = train_dataset.shuffle().repeat().batch(batch_size)
val_dataset = tf.data.FixedLengthRecordDataset(filenames_validation)

Perform synchronous training
model.fit(train_dataset, nepochs, val_dataset)

execute Tarantella with

tarantella_run -np 8 -npernode 4 -m machinefile --no-gpus ./models/resnet50.py --batch-size=1024 -e 100

Tarantella model

import tensorflow as tf

Step (1)
Initialize the framework
import tarantella as tnt

Create Keras model
model = tf.keras.Model(resnet56.get_model())

Step (2)
Wrap model
model = tnt.TarantellaModel(model)

Define optimizer with appropriate learning rate for large batch sizes
sgd = tf.keras.optimizers.SGD(learning_rate=base_learning_rate)

Load input data distributed in micro-batches
train_dataset = tf.data.FixedLengthRecordDataset(filenames_train)
train_dataset = train_dataset.shuffle().repeat().batch(batch_size)
val_dataset = tf.data.FixedLengthRecordDataset(filenames_validation)

Perform distributed synchronous training
model.fit(train_dataset, nepochs, val_dataset)

- advanced interface for power-users available
- automatic distribution of datasets

Preliminary benchmarks...

- image classification: ResNet50 on ImageNet
- TensorFlow 2.1, Horovod 19.4 (with Infiniband)
- 5 epochs, 3 repetitions with different random seeds, micro-batch size 64 (GPU) / 256 (CPU)

- NVidia Titan V (12 GB memory)
- 2 x Intel[®] Xeon[®] Silver 4108 CPU @ 1.80GHz (16 cores)
- 2 x Mellanox ConnectX-5 100Gbps Infiniband

- 2 x Intel[®] Xeon[®] Gold 6148 CPU @ 2.40GHz (20 cores/40 hyperthreads)
- Mellanox ConnectX-5 100Gbps Infiniband

...show very promising results

- on par / better than state-of-the-art (Horovod)
- good strong scalability
- further optimizations to be exploited

Next steps:

- MLPerf benchmark suite evaluation
- full model parallelism **in active development**

The Tarantella team

"None of us is as smart as all of us."

--- Ken Blanchard

Peter Labus, Ph.D.

Alexandra Carpen-Amarie, Ph.D.

Martin Kuehn, Ph.D.

Master's students

Pengqiu Li

Kavyashree Renukachari

Distributed Deep Learning: summary & outlook

- HPC can super-charge the Deep Learning revolution!
- Ieverage data & model parallelism for large scale deep learning without memory limits
- build on existing solutions for fair & green AI

Get in touch!

peter.labus@itwm.fhg.de linkedin.com/in/PeterLabus/

